Т<u>ИП</u>ОВОЕ ТЕХНИЧЕСКОЕ РЕШЕНИЕ №1 оснащения жилых и нежилых помещений многоквартирного дома средствами измерений, иным оборудованием и нематериальными активами, обеспечивающими возможность их подсоединения (интегрирования) в интеллектуальную систему учёта электрической энергии

(мощности) гарантирующего поставщика.

1. Область применения

- 1.1. Настоящий документ устанавливает единые нормы, правила и требования к техническим решениям оснащения жилых и нежилых помещений в многоквартирном доме средствами измерений, иным оборудованием и нематериальными активами, обеспечивающими их подсоединение (интегрирование) в интеллектуальную систему учёта электрической энергии (мощности) гарантирующего поставщика.
- 1.2. Действие настоящего документа распространяется на организации застройщики (специализированные застройщики), имеющие в собственности или на ином законном основании земельный участок, разрешение на строительство (ввод в эксплуатацию) многоквартирного дома на этом земельном участке, техническими заказчиками и генеральными подрядчиками в соответствии с договором строительного подряда, а также иными строительно-монтажными, наладочными, эксплуатационными и ремонтными организациями.

2. Нормативное обеспечение

- 2.1. В настоящем документе использованы ссылки на следующие нормативно-правовые акты, государственные стандарты и технические регламенты:
- Жилищный кодекс Российской Федерации от 29.12.2004 № 188-ФЗ, далее «ЖК РФ»;
- Градостроительный кодекс Российской Федерации от 29.12.2004 № 190-ФЗ, далее «ГсК РФ»;
- Федеральный закон от 27.12.2018 № 522-ФЗ «О внесении изменений в отдельные законодательные акты Российской Федерации в связи с развитием систем учёта электрической энергии (мощности) в Российской Федерации», далее «Закон № 522-ФЗ»;
- Федеральный закон от 26.03.2003 № 35-ФЗ «Об электроэнергетике», далее «Закон № 35-ФЗ»;
- Федеральный закон от 23.11.2009 № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности, и о внесении изменений в отдельные законодательные акты Российской Федерации», далее «Закон № 261-ФЗ»;
- Федеральный закон от 27.12.2002 № 184-ФЗ «О техническом регулировании», далее «Закон № 184-ФЗ»;
- Федеральный закон от 26.06.2008 № 102-ФЗ «Об обеспечении единства измерений», далее «Закон № 102-ФЗ»:
- Федеральный закон от 30.12.2004 № 214-ФЗ «Об участии в долевом строительстве многоквартирных домов и иных объектов недвижимости и о внесении изменений в некоторые законодательные акты Российской Федерации», далее «Закон № 214-ФЗ»;
- Постановление Правительства Российской Федерации от 19.06.2020 № 890 «О порядке предоставления доступа к минимальному набору функций интеллектуальных систем учёта электрической энергии (мощности)», далее «Постановление № 890»;
- Постановление Правительства Российской Федерации от 04.05.2012 № 442 «О функционировании розничных рынков электрической энергии, полном и (или) частичном ограничении режима потребления электрической энергии», далее «Постановление № 442»;
- ГОСТ 12.1.038-82 «Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов»:
- ГОСТ 32144-2013 "Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения";

- СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»;
- СНиП 3.05.06-85 «Электротехнические устройства»;
- Правила устройства электроустановок (ПУЭ;
- Правила технической эксплуатации электроустановок потребителей (ПТЭЭП);
- Правила учёта электрической энергии. Зарегистрировано в Минюсте РФ 24.10.1996 № 1182.

Выбранный застройщиком вариант типового технического решения должен соответствовать нормам, правилам и требованиям указанных правовых актов, государственных стандартов и технических регламентов. Если ссылочный документ был заменен (изменен), следует руководствоваться замененным (измененным) документом.

3. Средства измерений, иное оборудование и нематериальные активы.

- 3.1. Под средствами измерений для целей коммерческого учёта электрической энергии (мощности) понимаются следующие материальные объекты:
 - индивидуальные, общие (для коммунальной квартиры) и коллективные (общедомовые) приборы учёта электрической энергии (мощности);
 - измерительные элементы (трансформаторы, резистивные шунты, катушки Роговского и т.п.);
 - измерительные комплексы (совокупность приборов учёта, измерительных элементов и др.);
 - проходные и испытательные устройства (образцовый учёт, шунтирование и отключение токовых цепей определенной фазы и т.п.);
 - вторичные измерительные цепи, соединенные по установленной схеме;
- 3.2. Под иным оборудованием для целей коммерческого учёта электрической энергии (мощности) понимаются материальные объекты:
 - коммутационные аппараты цепей переменного тока и вторичных измерительных цепей;
 - аппараты защиты средств измерений от токов короткого замыкания;
 - оснащение и материалы для следующих целей:
 - монтаж, пуск, наладка и допуск в эксплуатацию средств измерений в местах их установки;
 - организация вторичных измерительных цепей, проходных и испытательных устройств;
 - организации каналов (линий) связи и средств информационного обмена;
 - сбор (прием), обработка и хранение измерительной информации и учётных данных;
 - передача управляющих сигналов (команд), сигналов штатных и срочных событий.
- 3.3. Под нематериальными активами для целей коммерческого учёта электрической энергии (мощности) понимаются отдельные объекты нематериальных прав по целевому признаку:
 - маркетинговые (товарные знаки, соглашение об отказе от конкуренции и т.п.);
 - клиентские (базы данных, клиентские базы, клиентские контракты и т.п.);
 - науки, техники и искусства (авторские, смежные и т.п.);
 - контрактные (права пользования, воспроизведения, лицензии, трудовые договоры и т.п.);
 - технологические (технологии, аппаратно-программное обеспечение, ноу-хау и т.п.).

4. Общие требования

4.1. Средства измерения, иное оборудование и нематериальные активы, используемые застройщиком при оснащении жилых и нежилых помещений в многоквартирном доме, совместно должны обеспечивать возможность их подсоединения (интегрирования) в интеллектуальную систему учёта электрической энергии (мощности) гарантирующего поставщика, а также прием, обработку и передачу измерительной информации, учётных данных, управляющих сигналов (команд), сигналов оповещения о наступлении штатных и срочных событий между ИИК (нижний уровень), УСПД (шлюзы) ИВКЭ (средний уровень) и соответственно ЦСОД (ИСУЭ) ИВК ВУ (верхний уровень).

- 4.2. Выбранный застройщиком вариант технического решения, используемого застройщиком при оснащении жилых и нежилых помещений в многоквартирном доме, должен обеспечить гарантированный прием, обработку и передачу измерительной информации, учётных данных, управляющих сигналов (команд), сигналов оповещения о наступлении штатных и срочных событий со всех средств измерения в интеллектуальную систему учёта электрической энергии (мощности) гарантирующего поставщика.
- 4.3. Применяемые застройщиком технологии и интерфейсы связи, спецификации и протоколы информационного обмена должны быть ратифицированы в Российской Федерации, открытыми и стандартизированными в виде совокупности унифицированных аппаратнопрограммных средств, методов взаимосвязи и взаимодействия, а также поведения функциональных устройств организации каналов (линий) связи и средств информационного обмена, необходимых для гарантированной взаимосвязи с функциональными элементами интеллектуальной системы учёта электрической энергии (мощности) гарантирующего поставщика.
- 4.4. Используемые застройщиком в жилых и нежилых помещениях многоквартирного дома технологии и интерфейсы связи, спецификации и протоколы информационного обмена между ИИК (нижний уровень), ИВКЭ (средний уровень) и ИВК ВУ (верхний уровень) должны быть защищены от несанкционированного вмешательства в процесс приема, обработки и передачи измерительной информации, учётных данных, управляющих сигналов (команд), сигналов оповещения о наступлении штатных и срочных событий.

Они должны учитывать риски информационной безопасности и оценки угроз, предоставлять возможность создавать защищенные сети информационного обмена данными, в соответствии с требованиями базовой модели угроз, опубликованной на сайте Минэнерго России, определяющей методы защиты информации с использованием сегментации пользователей, идентификации и аутентификации доступа, а также сквозного шифрования каналов (линий) связи.

Выбранный застройщиком вариант технического решения должен содержать элементы информационной безопасности, действующие до, во время и после возникновения угроз, позволяющие обнаруживать вредоносные программы, сетевые угрозы и своевременно предотвращать возникающие угрозы, а также уменьшать теоретические возможности совершения атак (преднамеренных действий злоумышленников), направленных на нарушение любого из свойств доступности, целостности и конфиденциальности установленных застройщиком в жилых и нежилых помещениях жилого дома средств измерений, иного оборудования и нематериальных активов.

4.5. Выбор любого варианта технического решения застройщик должен обосновывать результатами инструментального обследования жилых и нежилых помещений в многоквартирном доме, выполненного для целей установления фактических значений показателя полной мощности принимаемого приёмником сигнала RSSI, обеспечивающих гарантированный прием, обработку и передачу измерительной информации, учётных данных, управляющих сигналов (команд), а также сигналов оповещения о наступлении штатных и срочных событий.

Для технических решений, используемых технологию GSM фактические значения показателя RSSI в жилых и нежилых помещениях многоквартирного дома не могут быть хуже -90 dBm (децибелов на милливатт).

5. Общие требования к средствам измерения и местам их установки

- 5.1. Все средства измерений, используемые для оснащения жилых и нежилых помещений в многоквартирном доме должны соответствовать нормам, правилам и требованиям законодательства Российской Федерации о техническом регулировании и обеспечении единства измерений. Должны быть допущены к применению в Российской Федерации и включены в Государственный реестр средств измерений.
 - 5.2. Общие требования к приборам учёта.
- 5.2.1. Все приборы учёта, установленные застройщиком в жилых и нежилых помещениях многоквартирного дома должны иметь на винтах крепления кожуха прибора учёта пломбы с

клеймом первичной государственной поверки, а на винтах крепления крышки зажимной платы (клеммной колодки) пломбы с клеймом гарантирующего поставщика. Дата на клейме первичной государственной поверки не должна превышать 12 месяцев для трехфазных приборов учёта и 2 лет для однофазных приборов учёта (1.5.13 ПУЭ).

- 5.2.2. В трехфазной цепи переменного тока учёт активной и реактивной электрической энергии (мощности) должен производиться с использованием трехфазных приборов учёта (1.5.14 ПУЭ).
- 5.2.3. Класс точности приборов учёта реактивной электрической энергии (мощности) должен выбираться на одну ступень ниже соответствующего класса точности приборов учёта активной электрической энергии (мощности) (1.5.15 ПУЭ).
- 5.2.4. Все приборы учёта электрической энергии (мощности) в составе ИИК (нижний уровень), УСПД (шлюзы), терминалы (кроссы) и коммутаторы в составе ИВКЭ (средний уровень) должны быть подсоединены (интегрированы) в интеллектуальную систему учёта электрической энергии (мощности) гарантирующего поставщика и поддерживаемыми аппаратно-программным обеспечением «Пирамида 2.0» (разработчик ООО «Системы и технологии»), «АСКУЭ БП» (разработчик ООО «Энфорс») или их аналог.
 - 5.3. Общие требования к измерительным трансформаторам.
- 5.3.1. Класс точности трансформаторов тока для подключения приборов учёта электрической энергии (мощности), не должен быть хуже 0,5.
- 5.3.2. Вторичные измерительные цепи трансформаторов тока подключаются к приборам учёта электрической энергии (мощности) отдельно от вторичных цепей защиты. Использование промежуточных трансформаторов тока для подключения приборов учёта электрической энергии (мощности) запрещается (1.5.18 ПУЭ).
- 5.3.3. Нагрузка вторичных измерительных цепей трансформаторов тока не должна превышать номинальных значений подсоединяемых приборов учёта электрической энергии (мощности) (1.5.19 ПУЭ).
- 5.3.4. Вторичные измерительные цепи трансформаторов тока должны выводиться на зажимы (клеммы) проходных испытательных устройств, обеспечивающие закорачивание вторичных измерительных цепей трансформаторов тока и отключение по каждой фазе токовых цепей приборов учёта электрической энергии (мощности) при их замене (проверке), а также включение образцового прибора учёта электрической энергии (мощности) без отсоединения вторичных измерительных цепей трансформаторов тока. Конструкция зажимов (клемм) проходных испытательных устройств должна обеспечивать возможность их пломбирования (1.5.23 ПУЭ).
 - 5.4. Общие требования к местам установки.
- 5.4.1. Средства измерений и иное оборудование должны размещаться в достаточно свободном, легко доступном и не стесненном для обслуживания месте в сухих помещениях с температурой в зимнее время не ниже 0° C (1.5.27 ПУЭ).
- 5.4.2. Средства измерений и иное оборудование должны размещаться на панелях в шкафах (щитах) или в нишах на стенах, имеющих жесткую конструкцию. Допускается размещение средств измерений и иного оборудования в деревянных, пластмассовых или металлических щитках. Высота от пола до зажимных плат (клеммных колодок) средств измерений и иного оборудования должна быть в пределах от 0,8 до 1,7 м. Допускается высота от пола менее 0,8 м, но не менее 0,4 м (п.1.5.29 ПУЭ).
- 5.4.3. Для размещения средств измерений и иного оборудования в местах, кроме жилых и нежилых помещений, где существует опасность их механического повреждения (загрязнения) и (или) доступа к ним посторонних лиц, должны быть предусмотрены запирающиеся шкафы (щиты) с окошком на уровне дисплея (индикаторов функционирования). Аналогичные шкафы (щиты) должны устанавливаться также для совместного размещения приборов учёта электрической энергии (мощности) и измерительных трансформаторов тока (п.1.5.30 ПУЭ).
- 5.4.4. Конструкции, типоразмеры и схемы крепления шкафов (щитов) для размещения средств измерений и иного оборудования должны обеспечивать возможность:

- свободного и не стесненного доступа для обслуживающего персонала к зажимам (клеммам) подключения средств измерений и иного оборудования;
- удобной установки (замены) средств измерений и иного оборудования с лицевой стороны с отклонением от вертикальной оси, не превышающим 1° (п.1.5.31 ПУЭ).
- 5.4.5. Прокладка цепей переменного тока и вторичных измерительных цепей к средствам измерений и иному оборудованию должны отвечать требованиям гл. 2.1 и 3.4. ПУЭ (п. 1.5.32 ПУЭ).
- 5.4.6. Сечение проводников кабелей, подсоединяемых к средствам измерения и иному оборудованию, должны приниматься в соответствии с требованиями п.3.4.4 ПУЭ (п.1.5.34 ПУЭ).
- 5.4.7. При монтаже проводников для непосредственного подключения средств измерений и иного оборудования перед зажимами (клеммами) необходимо оставлять свободные ко<u>нцы</u> проводников длиной не менее 120 мм. Изол<u>яция проводников (фаз и нейтрали)</u> на длине не менее 100 мм должна иметь отличительную маркировку проводников по цвету (п.1.5.35 ПУЭ).
- 5.4.8. Для безопасной установки (замены) средств измерений и иного оборудования в сетях напряжением 0,4 кВ должна предусматриваться возможность отключения (снятие напряжения) со всех питающих фаз средств измерений и иного оборудования коммутационными аппаратами (предохранителями) установленными на расстоянии не более 10 м до них. Трансформаторы тока в сетях напряжением 0,4 кВ должны устанавливаются после коммутационных аппаратов по направлению потока мощности (п.1.5.36 ПУЭ).
- 5.4.9. Для целей безопасной установки (замены) и технического обслуживания средств измерений и иного оборудования в местах их размещения нужно исключить наличие открытых (неизолированных) токоведущих частей.
- 5.4.10. Заземление (зануление) средств измерений и иного оборудования должно выполняться в соответствии с требованиями гл.1.7. ПУЭ. Проводники заземления (зануления) от средств измерений и иного оборудования до ближайшей сборки зажимов (клемм) заземления (зануления) должны быть выполнены из меди (п.1.5.37 ПУЭ).
- 5.4.11. Если объект автоматизации имеет несколько подсоединений (вводов) с раздельным учётом электрической энергии (мощности), на панелях в шкафах (<u>ши</u>тах) или в н<u>иш</u>ах размещения средств измерений должны быть надписи с наименованием присоединений (п.1.5.38 ПУЭ).
- 5.4.12. Средства измерений и иное оборудование должны быть за<u>щищ</u>ены от внешнего воздействия и (или) несанкционированного доступа для исключения возможности вмешательства в результаты измерений и (или) искажения учётных данных.
 - 6. Техническое решение оснащения жилых и нежилых помещений в многоквартирном доме средствами измерений, оборудованием и нематериальными активами на основе промышленного интерфейса RS-485 (TIA/EIA 485-A: 2003)

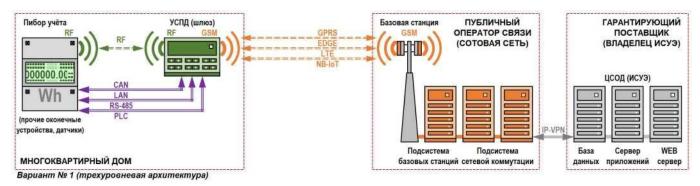


Рисунок № 1 Организация каналов (линий) связи на базе промышленного интерфейса RS-485

Жилые и нежилые помещения в многоквартирном жилом доме должны быть оснащены средствами измерений, иным оборудованием и нематериальными активами, соответствующими требованиям минимального набора функций, утвержденным Постановлением № 890, формирующим ИИК (нижний уровень).

Все приборы учёта в составе ИИК (нижний уровень) должны быть оснащены универсальными приемапередатчиками промышленного интерфейса RS-485, обеспечивающими гарантированный прием, обработку и передачу измерительной информации, учётных данных, управляющих сигналов (команд), а также сигналов оповещения о наступлении штатных и срочных событий на УСПД (шлюзы), формирующие ИВКЭ (средний уровень).

Обмен измерительной информацией, учётными данными, управляющими сигналами (командами) и сигналами оповещения между ИИК (нижний уровень) и ИВКЭ (средний уровень) системы осуществляется по одному организованному каналу (линии) связи с использованием промышленного интерфейса RS-485.

В качестве канала (линии) связи между приборами учёта в составе ИИК (нижний уровень) и УСПД (шлюзами) в составе ИВКЭ (средний уровень) должна быть проложена внутридомовая экранированная кабельная сеть (общая проводная шина витая пара), по которой осуществляется прием, обработка и передача унифицированных дискретных сигналов с использованием промышленного интерфейса RS-485 и стандартизированных спецификаций сетевых протоколов UART (USART) и (или) Modbus.

УСПД (шлюзы) в составе ИВКЭ (средний уровень) должны быть оснащены на входе универсальными приема-передатчиками промышленного интерфейса RS-485, а на выходе мультичастотными GSM-модемами, поддерживающими стандарты GPRS, EDGE, LTE и NB-IoT, обеспечивающими прием, обработку и передачу измерительной информации, учётных данных, управляющих сигналов (команд) и сигналов оповещения о наступлении штатных и срочных событий на ЦСОД (ИСУЭ), формирующий ИВК ВУ (верхний уровень) и обратно.

Между УСПД (шлюзами) в составе ИВКЭ (средний уровень) и ЦСОД (ИСУЭ) в составе ИВК ВУ (верхний уровень) должна быть организована беспроводная сеть с использованием технологии GSM стандартов GPRS, EDGE, LTE и NB-IoT.

7. Прочие условия

- 7.1. Проектная документация на многоквартирный дом должна учитывать данные технические требования гарантирующего поставщика.
- 7.2. Раздел проектной документации должен содержать инженерно-технические решения, технические и функциональные требования к приборами учёта (измерительным комплексам), устройствами и оборудованием сбора и передачи данных, системами внутренней связи (устройствами, каналами, линиями и т.п.), обеспечивающие массовый сбор и передачу измерительной информации и учётных данных, а также возможность подсоединения (интегрирования) приборов учёта (измерительных комплексов) в интеллектуальную систему учёта электрической энергии (мощности) в соответствии с нормами, правилами и требованиями законодательства Российской Федерации об электроэнергетике, обеспечении единства измерений, о техническом регулировании и градостроительной деятельности.
- 7.3. Застройщик вправе согласовать выбранные им инженерно-технические решения с гарантирующим поставщиком, включая приборы учета, измерительные трансформаторы, систему внутренней связи, которые будут использованы им при разработке проектной документации и оснащении многоквартирного дома.
- 7.4. Застройщик вправе обратиться к гарантирующему поставщику с запросом о подтверждении соответствия разработанной проектной документации техническим требованиям.
- 7.4.1. Проектную документацию требуется предоставить на согласование на бумажном и электронном носителях.
- 7.4.2. Наличие согласования инженерно-технического решения и проектной документации со стороны гарантирующего поставщика не освобождает застройщика от обязанности обеспечить фактическое функционирование данной системы на объекте и не является основанием для гарантированной приёмки системы.
- 7.5. После завершения работ по строительству многоквартирного дома застройщик направляет гарантирующему поставщику уведомление о необходимости введения приборов учета электрической энергии в эксплуатацию.

- 7.5.1. Допуск в эксплуатацию индивидуальных, общих (квартирных) приборов учета электрической энергии, установленных застройщиком в многоквартирном доме, осуществляется гарантирующим поставщиком после подписания сетевой организацией акта об осуществлении технологического присоединения многоквартирного дома с применением постоянной схемы электроснабжения.
- 7.5.2. Индивидуальные (общие для коммунальной квартиры) приборы учета электрической энергии в жилых и нежилых помещениях многоквартирного дома, коллективные (общедомовые) приборы учета, измерительные трансформаторы (при необходимости их установки вместе с коллективными (общедомовыми) приборами учета), а также система внутренней связи (устройства, каналы, линии), предназначенная для сбора и передачи данных с указанных приборов учета должны быть допущены в эксплуатацию, гарантирующему поставщику до введения застройщиком многоквартирного дома в эксплуатацию.
- 7.5.3. Процедура установки и допуска прибора учета в эксплуатацию заканчивается составлением акта допуска прибора учета в эксплуатацию, на основании формы, предусмотренной Приложением № 16 к Правилам технологического присоединения.
- 7.6. Индивидуальные, общие (квартирные) и коллективные (общедомовые) приборы учета электрической энергии (измерительные трансформаторы) должны быть переданы застройщиком в эксплуатацию гарантирующему поставщику, в зоне деятельности которого расположен многоквартирный дом, до введения такого многоквартирного дома в эксплуатацию.
- 7.6.1. В течение 10 рабочих дней после допуска в эксплуатацию всех индивидуальных, общих (квартирных) и коллективных (общедомовых) приборов учета электрической энергии, установленных в многоквартирном доме застройщик составляет и направляет для подписания гарантирующему поставщику подписанный со своей стороны в 2 экземплярах акт приема-передачи в эксплуатацию приборов учета по форме Приложения № 6 к Основным положениям функционирования розничных рынков электрической энергии.
- 7.6.2. До момента перехода права собственности на приборы учета к собственникам помещений в многоквартирном доме, ответственность за сохранность индивидуальных, общих (квартирных), коллективных (общедомовых) приборов учета электрической энергии, измерительных трансформаторов, системы внутренней связи (устройств, каналов, линий), предназначенной для сбора и передачи данных с приборов учета, несет застройщик.